
Practical work nº 1  -  Divider 
 
 
 
1  Goal 
 
Generation of a VHDL model of a generic divider for natural numbers.  
 
 
2  Dividers (chapters 6 and 13 of [DES2006]) 
 
2.1  Basic algorithm 
 
Let X and Y be two natural numbers with Y > 0. Define Q and R respectively as the quotient and 
the remainder of the division of X by Y, with an accuracy of p fractional bits by: 
 

2p.X = Q.Y + R, 
 

where Q and R are natural numbers, and R < Y. In other words: 
 

X = (Q.2-p).Y + (R.2-p), with R.2-p < Y.2-p, 
  

so that the unit in the least significant position (ulp) of Q.2-p and R.2-p is equal to 2-p. In the 
particular case where p = 0, that is 
 

X = Q.Y + R, with R < Y,  
 
Q and R are the quotient and the remainder of the integer division of X by Y. 

 
The basic algorithm applies to operands X and Y such that  
 

X < Y.  
 
In the general case, to ensure that X < Y, a previous alignment step is necessary: this will be 
seen in section 2.2.  
 
The next theorem constitutes the justification of the basic division algorithm: 
 
Theorem 1 – Fundamental equation of division    
 

Given two natural numbers a and b such that a < b, then there exists two natural numbers q 
and r satisfying 2.a = q.b + r, with q ∈ {0, 1} and r < b. 
 

Proof 
 

If 2.a < b, then 2.a = 0.b + r where r = 2.a < b. If 2.a ≥ b, then 2.a = 1.b + r where r = 2.a - b  
< 2.b – b = b. 

 
The iterative application of the preceding theorem, i.e. 
 

2.r(0) = q(1).Y + r(1), r(1) < Y, 
2.r(1) = q(2).Y + r(2), r(2) < Y, 
... 
2.r(p-1) = q(p).Y + r(p), r(p) < Y,       (1) 
 

with r(0) = X, generates the following relation 
 

X.2p = (q(1).2p-1 + q(2).2p-2 + ... + q(p).20).Y + r(p),     (2) 
 

so that 



 
Q = q(1).2p-1 + q(2).2p-2 + ... + q(p).20  and  R = r(p).  
 

Assume that a procedure division_step has been defined 
 

procedure division_step (a, b: in natural; q, r: out natural); 
 

that computes q and r such that 2.a = q.b + r, with q ∈ {0, 1} and r < b. Then the following basic 
division algorithm is a straightforward application of (1) and (2) 

 
Algorithm 1 – Basic division 
r(0) := X; 
for i in 1 .. p loop 
   division_step (r(i-1), Y, q(i), r(i)); 
end loop; 

 
It generates the binary representation q(1) q(2) ... q(p) of Q and the remainder R = r(p). The 
division_step procedure is the following (see theorem 1): 
 
Algorithm 2 – Base-2 division step  
z := 2*a - b; 
if z < 0 then q := 0; r := 2*a; else q := 1; r := z; end if; 
 
The corresponding divider structure is shown in figure 1. 

 
Figure 1  Divider structure 

 
The following VHDL model describes the circuit of figure 1 in the case where both x and y are n-
bit naturals: 
 
library ieee;  
use ieee.std_logic_1164.all; 
package my_package is 
   constant n: natural := 8; 
   constant p: natural := 8; 
   type remainders is array (0 to p) of  
      std_logic_vector(n-1 downto 0); 

division_step

division_step

division_step

r(0)=X Y

r(1)

r(p)

...
r(p-1)

q(1)

q(2)

q(p)



   type long_remainders is array (1 to p) of 
      std_logic_vector(n downto 0); 
end my_package; 
 
library ieee;  
use ieee.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
use work.my_package.all; 
entity practi1 is 
port ( 
   x, y: in std_logic_vector(n-1 downto 0); 
   quotient: out std_logic_vector(p-1 downto 0); 
   remainder: out std_logic_vector(n-1 downto 0) 
); 
end practi1; 
 
architecture rtl of practi1 is 
   signal r: remainders; 
   signal z: long_remainders; 
begin 
   r(0) <= x; 
   iteration: for i in 1 to p generate 
      z(i) <= (r(i-1)&'0') - ('0'&y); 
      with z(i)(n) select quotient(p-i) <= '0' when '1',  
         '1' when others; 
      with z(i)(n) select r(i) <= (r(i-1)(n-2 downto 0)&'0') when '1', 
         z(i)(n-1 downto 0) when others ; 
   end generate; 
   remainder <= r(p); 
end rtl; 
 
Observe that if r(i-1) is smaller than y, and y is smaller than 2n, then 2.r(i-1)-y is included 
between –2n and –2n, so that z(i) = 2.r(i-1)-y is an (n+1)-bit 2’s complement number. 
 
 
2.2  Generic divider 
 
The basic algorithm applies to operands X and Y such that X < Y. Assume now that X is an m-
bit natural and Y an n-bit natural greater than 0. In order to compute the quotient and the 
remainder of the division of X by Y, with an accuracy of p fractional bits, first substitute Y by Y' = 
2m.Y and p by p+m, and then use algorithm 1 for computing Q and R’ such that 

 
2p+m.X = Q.Y' + R', with R' < Y', 

 
so that 
 

2p.X = Q.(Y’/2m) + R’/2m = Q.Y + R, with R = R'/2m <  Y'/2m = Y. 
 
A first version of the circuit consists of substituting in the VHDL model of section 2.1 
 

n by new_n = m+n 
X by 00...0X, that is, an new_n-bit number equal to X, 
Y by Y00...0, another new_n -bit number equal to Y’ = 2m.Y, 
 p by new_p = p+m. 
 

The following VHDL model describes a generic divider: 
 



library ieee;  
use ieee.std_logic_1164.all; 
package my_package is 
   constant m: natural := 8; 
   constant n: natural := 4; 
   constant new_n: natural := m+n; 
   constant p: natural := 6; 
   constant new_p : natural := m+p; 
   constant m_zeroes:  
      std_logic_vector(m-1 downto 0) := (others => '0'); 
   constant n_zeroes:  
      std_logic_vector(n-1 downto 0) := (others => '0'); 
   type remainders is array (0 to new_p) of  
      std_logic_vector(new_n-1 downto 0); 
   type long_remainders is array (1 to new_p) of  
      std_logic_vector(new_n downto 0); 
end my_package; 
 
library ieee;  
use ieee.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
use work.my_package.all; 
entity practi1b is 
port ( 
   x: in std_logic_vector(m-1 downto 0); 
   y: in std_logic_vector(n-1 downto 0); 
   quotient: out std_logic_vector(new_p-1 downto 0); 
   remainder: out std_logic_vector(n-1 downto 0) 
); 
end practi1b; 
 
architecture rtl of practi1b is 
   signal r: remainders; 
   signal z: long_remainders; 
   signal new_x, new_y: std_logic_vector(new_n-1 downto 0);  
begin 
   new_x <= n_zeroes&x; 
   new_y <= y&m_zeroes; 
   r(0) <= new_x; 
   iteration: for i in 1 to new_p generate 
      z(i) <= (r(i-1)&'0') - ('0'&new_y); 
      with z(i)(new_n) select quotient(new_p-i) <= '0' when '1',  
         '1' when others; 
      with z(i)(new_n) select r(i) <=  
         (r(i-1)(new_n-2 downto 0)&'0') when '1',  
         z(i)(new_n-1 downto 0) when others ; 
   end generate; 
   remainder <= r(new_p)(new_n-1 downto m); 
end rtl; 
 
 
3  Previous work 
 
3.1  Read and understand the preceding section (2. Dividers). Be sure to understand both the 
algorithms and the corresponding VHDL models. 
 
3.2  Most synthesis tools will associate an (m+n)-bit adder to the computation of 
 

z(i) <= (r(i-1)&'0') - ('0'&new_y); 
 



Nevertheless, as new_y = Y.2m, that is, a natural whose m less-significant bits are 0’s, an n-bit 
adder should be sufficient. Thus, modify the model in such a way that an n-bit adder will be 
inferred instead of an (m+n)-bit one. 
 
3.3  Generate a command file (.do) for inputting stimuli to the simulation model. For example, 
assuming that  
 

m = 16, n = 10, p = 0 (integer division), 
 
X = 42631, Y = 712, 
X = 12999, Y = 1000, 
X = 17, Y = 3, 
X = 65000, Y = 511. 
 

Compute the correct value of Q and R for every case. 
 
 
4  Practical work 
 
4.1 Simulate the circuit with the previously defined (point 3.3) stimuli. 
4.2 Simulate using a test bench wave form 
4.3 (optional) write and exhaustive VHDL testbench for the divider 
4.4 (optional) rewrite the code in order to explicitly describe the circuit of figure 2. 
 
 

       
 

Figure 2. Restoring Divider for natural operands. a. structure. b. basic division step  
. 
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