
Practical work nº 4 - Example of hw-sw co-design with PicoBlaze

As a first example of hw-sw co-design, using the PicoBlaze virtual processor, a simple system will
be developed. Using the buttons and switches two eight bit operands will be inputted and added.

Specification

The system under development has:

- 4 buttons (one for reset, one to input operand 1, one to input oper. 2, and one to operate)
- 8 switches to describe a 8 bits natural.
- 4 seven segments to show operands and result.

Figure 1 Digilent development board

Hardware platform

The Digilent Spartan-3 development board will be used (http://www.digilentinc.com/). The switches
and buttons will be used to input the operands. The design environment contains the PicoBlaze
virtual processor (a VHDL model).

Hardware – software partitioning

The proposed block diagram is shown in figure 2. The processor is in charge of all operations but
the output interface (shows the 4 seven segments).

The buttons and switches are mapped in different ports. The in_select module selects which input
read the picpBlaze depending on port_id signal.

Five 8 bits registers holds the 4 seven segments graphics and the 8 leds. The 4 registered seven
segments are displayed thank to the 7_segement_contrloller module.

O
ut_Select

re
g

re
g

re
g

re
g

re
g

7
se

g
C

on
tr

ol
.

ce
_7

se
g0

Figure 2 Block diagram

Program generation (software)

1 Assembly language program

The following program, saved as picoSimple.asm, can be assembled and simulated with pBlaze
IDE version: 3.7.4 ß:Some parts are summarized here

; **
; Ports and constant definitions.
; **
button_port EQU $11
switch_port EQU $
leds_port EQU 128
s_seg_0 EQU $70
s_seg_1 EQU $71
s_seg_2 EQU $72
s_seg_3 EQU $73

; **
; Main program
; **

; Load Scratchpad with seven segments figures
load_scratchpad: LOAD sF, $3F ; cero
 STORE sF, 0
 LOAD sF, $06 ; uno
 STORE sF, 1
 LOAD sF, $5B ; dos

 . . .
 LOAD sF, $79 ; E
 STORE sF, 14
 LOAD sF, $71 ; F
 STORE sF, 15

 EINT ; eneable interrupt
InitRegisters:
init_Hex0: LOAD sA, zero ; Hexa Digits 1. MSB
init_Hex1: LOAD sB, zero ; Hexa Digits 1. MSB
init_Hex2: LOAD sC, zero ; Hexa Digits 1. MSB
init_Hex3: LOAD sD, zero ; Hexa Digits 1. MSB
init_LEDCount: LOAD sE, $FF ; All LEDs on

 CALL send_HOLA ; Send a Hello message
 EINT

MainLoop:
read_switches: IN s5, switches ; read Port switches
read_buttons: IN s6, buttons ; read Port buttons
 COMP s6, 1 ; if button one is pressed
 CALL Z, button_one
 COMP s6, 2 ; if button two is pressed
 CALL Z, button_two
 COMP s6, 4 ; if button three is pressed
 CALL Z, button_three
write_leds: OUT sE, leds_port ; out the leds
 JUMP MainLoop

show_7segm:
search_scratchpad0: FETCH s9, sA
display_leds0: OUT s9, s_seg_0 ; shows
search_scratchpad1: FETCH s9, sB
display_leds1: OUT s9, s_seg_1 ; shows
search_scratchpad2: FETCH s9, sC
 ADD s9, $80 ; add a dot in 7seg
display_leds2: OUT s9, s_seg_2 ;
search_scratchpad3: FETCH s9, sD
display_leds3: OUT s9, s_seg_3 ;
 RET

button_one: IN s6, buttons ; read buttons again
 COMP s6, 0 ; if button one is
 JUMP NZ, button_one ; pressed wait until
 LOAD s1, s5 ; button is released
 LOAD sA, s1
 AND sA, $0F
 LOAD sB, s1
 SR0 sB
 SR0 sB
 SR0 sB
 SR0 sB
 CALL show_7segm
 RET

button_two: ; Similar to button 1

button_three: IN s6, buttons ; read buttons again
 COMP s6, 0 ; if button one is pressed
 JUMP NZ, button_three ; wait until is released
 LOAD s3, s1
 ADD s3, s2 ; s3 = s1 + s2

Show_result: LOAD s9, $40 ; a dash for 7segments
 OUT s9, s_seg_0 ; shows a dash
 LOAD s8, s3
 AND s8, $0F
 FETCH s9, s8 ; in scratchpad
 OUT s9, s_seg_1 ; shows
 LOAD s8, s3
 SR0 s8
 SR0 s8
 SR0 s8
 SR0 s8
 FETCH s9, s8 ; in scratchpad
 OUT s9, s_seg_2 ;
 LOAD s9, $40
 OUT s9, s_seg_3 ; shows a dash
 RET

; With an interrupt service the 8 leds in the board is shifted

Ensure the correct functional behavior of program using PicoBlaxe IDE simulation capabilities.

Figure 3 Picoblaze IDE

2 Generation of the program memory model

The PicoBlaze assembler kcpsm.exe generates the VHDL model of the program memory. Some
modifications should be done to use the command line version of compiler. An easier way to do that
is generate the ROM directly from PicoBlaze IDE.

In order to generate the ROM content the following code line should be added at the beginning:

 VHDL "ROM_form.vhd", "name_of_module.vhd", "name_of_entity"

Note: The Picoblaze IDE executable, the files ROM_form.vhd and ROM_form.coe and the
source.asm should be at the same directory.

Circuit generation (hardware)

For generating the circuit of figure 2, the following models are available:

PicoBlaze (kcpsm.vhd),
the program memory (Pico_simple.vhd).
The in_select module (in_select.vhd)
The out_select module (out_select.vhd)
The seven segment controller (sseg_control.vhd)

It remains to add the four seven segment registers. The register will be modeled by a process within
the circuit architecture. A summary of VHDL code:

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
entity picoblaze_simple is
 Port (
 clk_board : in std_logic;
 reset : in std_logic;
 switches : in std_logic_vector(7 downto 0); -- Switches
 buttons: in std_logic_vector(2 downto 0); -- Buttons
 LEDS : out std_logic_vector(7 downto 0); -- LEDs
 DIS : out std_logic_vector(3 downto 0); -- 7 seg selector
 D7S : out std_logic_vector(7 downto 0)); -- 7 segments and Point
 end picoblaze_simple;

architecture Behavioral of picoblaze_simple is
-- declaration of components: KCPSM3, program ROM (pico_Simple).
-- output selector, interrupt generator, segments controller
-- input selector. And declaration of system signals

begin
 processor: kcpsm3
 port map(address => address,
 instruction => instruction,
 port_id => port_id,
 write_strobe => write_strobe,
 out_port => out_port,
 read_strobe => read_strobe,
 in_port => in_port,
 interrupt => interrupt,
 interrupt_ack => interrupt_ack,
 reset => reset,
 clk => clk);

 program_rom: pico_simple
 port map(address => address,
 instruction => instruction,
 clk => clk);

 gen_int: gen_interrupt port map(clk => clk, interrupt => interrupt);

 out_sel: out_select port map(port_id => port_id,
 write_strobe => write_strobe, ce_leds => ce_leds,
 ce_7seg_0 => ce_7seg_0, ce_7seg_1 => ce_7seg_1,
 ce_7seg_2 => ce_7seg_2, ce_7seg_3 => ce_7seg_3);

 in_sel: in_select PORT MAP(
 clk => clk, read_strobe => read_strobe, port_id => port_id,
 buttons => buttons, switches => switches, in_port => in_port);

 registers: process (CLK, reset)
 begin
 if reset = '1' then
 reg_leds <= (others => '0');
 reg_7seg_0 <= (others => '0'); reg_7seg_1 <= (others => '0');
 reg_7seg_2 <= (others => '0'); reg_7seg_3 <= (others => '0');
 elsif CLK='1' and CLK'event then
 if ce_leds = '1' then reg_leds <= out_port; end if;
 if ce_7seg_0 = '1' then reg_7seg_0 <= out_port; end if;
 if ce_7seg_1 = '1' then reg_7seg_1 <= out_port; end if;
 if ce_7seg_2 = '1' then reg_7seg_2 <= out_port; end if;
 if ce_7seg_3 = '1' then reg_7seg_3 <= out_port; end if;
 end if;
 end process;

 sseg_cont: sseg_control port map(clk => clk,
 reg_7seg_0 => reg_7seg_0, reg_7seg_1 => reg_7seg_1,
 reg_7seg_2 => reg_7seg_2, reg_7seg_3 => reg_7seg_3,
 ssel => DIS, sseg => D7S);

 LEDS <= reg_LEDS;

end Behavioral;

Complete system simulation

The VHDL model is simulated with ModelSim. For that, the input stimuli can be previously defined
and stored within a do file; or generate a test bench wave form.

Assuming that the previous file as been saved as do_file.txt, its execution is controlled from the
VSIM command line (VSIM···>) with do do_file.txt. The simulation allows to completely debug
both the hardware and the software.

Synthesis and implementation

The programs XST (Xilinx Synthesis Technology) and ISE (Integrated System Environment) are
available within the Xilinx – Project Navigator package.

The following ping assignment should be ensured:

NET "clk_board" LOC = "T9";
NET "reset" LOC = "l14"; # the buttons<3>
NET "buttons<2>" LOC = "l13" ;
NET "buttons<1>" LOC = "m14" ;
NET "buttons<0>" LOC = "m13" ;

NET "D7S<7>" LOC = "p16" ;
NET "D7S<6>" LOC = "n16" ;
NET "D7S<5>" LOC = "f13" ;
NET "D7S<4>" LOC = "r16" ;
NET "D7S<3>" LOC = "p15" ;
NET "D7S<2>" LOC = "n15" ;
NET "D7S<1>" LOC = "g13" ;
NET "D7S<0>" LOC = "e14" ;

NET "DIS<3>" LOC = "e13" ;
NET "DIS<2>" LOC = "f14" ;
NET "DIS<1>" LOC = "g14" ;
NET "DIS<0>" LOC = "d14" ;

NET "LEDS<0>" LOC = "k12" ;
NET "LEDS<1>" LOC = "p14" ;
NET "LEDS<2>" LOC = "l12" ;
NET "LEDS<3>" LOC = "n14" ;
NET "LEDS<4>" LOC = "p13" ;
NET "LEDS<5>" LOC = "n12" ;
NET "LEDS<6>" LOC = "p12" ;
NET "LEDS<7>" LOC = "p11" ;

NET "switches<7>" LOC = "k13" ;
NET "switches<6>" LOC = "k14" ;
NET "switches<5>" LOC = "j13" ;
NET "switches<4>" LOC = "j14" ;
NET "switches<3>" LOC = "h13" ;
NET "switches<2>" LOC = "h14" ;
NET "switches<1>" LOC = "g12" ;
NET "switches<0>" LOC = "f12" ;

Test

The pico_simple.bit file, generated at the end of the implementation, is downloaded to the Digilent
Spartan-3 development board using the impact program include in Xilinx ISE.

